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The calculation of three-dimensional turbulent 
boundary layers in incompressible flow 
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(Received 24 October 1968 and in revised form 3 February 1969) 

A method is described for calculating the development of a three-dimensional 
turbulent boundary layer, over a flat or developable surface, in incompressible 
flow. The method involves the numerical integration of the equations of motion 
by an explicit finite-difference method. The shear stress is determined by a 
parallel integration of the turbulent energy equation modified by the inclusion 
of empirical functions of a form which has proved successful in two dimensions, 
and the additional assumption is made that the turbulent shear stress acts in the 
direction of the rate of strain of the mean motion. The treatment of the turbulent 
energy equation follows closely the work of Bradshaw, Ferriss & Atwell (1967) 
in two dimensions. 

Comparison with experiment is found to be substantially more difficult than 
in two dimensions. Particular difficulty is encountered in translating the recorded 
details of the experiment into boundary conditions for the calculation. The 
comparisons submitted here give some indication that the method as a whole 
performs satisfactorily, but they do not provide a definitive assessment of the 
validity of the basic assumptions. A plea is made for an experiment to supply data 
in a suitable form for making a more careful assessment of methods of this type. 

1. Introduction 
Three-dimensional turbulent boundary layers are so much more common in 

practice than two-dimensional ones that the amount of research effort which 
has been, and continues to be, expended on the latter problem seems dis- 
proportionately large. Few attempts have been made to study three-dimensional 
boundary layers either experimentally or theoretically; and, as far as the 
development of calculation methods is concerned, the great majority of investi- 
gators have never ventured into three dimensions, presumably being deterred 
by the larger number of velocity and shear stress components that have to be 
considered. 

The small amount of published theoretical work has been confined almost 
exclusively to the application of integral methods and to the study of mean 
velocity profiles. However, this latter study has shown that the profile shapes 
(especially the crossflow profile shapes) are too complicated to be represented 
adequately by a small number of parameters (e.g. Joubert, Perry & Brown 1967; 
Klinksiek & Pierce, unpublished), and therefore it seems doubtful whether a 
sufficiently flexible integral method can be constructed on the basis of a small 
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number of integral equations. One involving a larger number of integral equations 
would offer few advantages, if any, but many disadvantages compared with 
a differential method. Integral methods are losing popularity in two dimensions, 
and they are even less attractive in three. 

One of the current fears about the numerical approach is that it will make 
excessive machine demands. However, this does not appear to be so, and the 
present work should demonstrate that meaningful calculations can be performed 
on computers of modest size and at  modest cost. Another fear is that the assump- 
tions regarding the turbulence are more exposed in a finite-difference method, 
and that suitable assumptions cannot yet be made with enough confidence. In 
reply to this objection, it is hoped that the present work shows that techniques are 
currently available for estimating the magnitude and direction of the turbulent 
shear stress, and that these techniques are at least sufficiently promising to form 
the basis for future refinement. In  any case, the consequences of the various 
assumptions can be assessed more readily than is possible with the type of 
global assumptions common in integral methods. 

In the present work, the differential equations of motion (the equations 
expressing the momentum balance in the two orthogonal directions parallel to 
the wall), and the continuity equation, are integrated numerically using an 
explicit finite-difference method. The shear stress is determined from the 
empirically modified turbulent energy equation, following the work of Townsend 
(1 955), Bradshaw et al. (1  967) and McDonald (1968). As in two dimensions, the 
assumption is made that the magnitude of the shear stress is directly proportional 
to the turbulent intensity, and the additional assumption is made that the shear 
stress acts in the direction of the maximum rate of strain of the mean motion. 
These assumptions are regarded as being of a provisional nature and, when i t  
appears to be necessary, the overall method can be updated to embrace a more 
sophisticated flow model with little difficulty. The relevant assumptions are 
discussed in more detail in $ 3 .  

The numerical scheme is described in $4, and comparisons with experiment 
are presented in $ 5. 

The present method is restricted to incompressible flows and also restricted 
to flows over flat surfaces (or developable surfaces of large radius.) In principle 
the extension to more general geometries requires only the inclusion of the 
curvature terms in the equations of motion, so long as the body radii remain 
large compared with the boundary-layer thickness. 

2. Basic equations 
A regular co-ordinate system (2, y, z )  is chosen with y measured normal to the 

surface (figure 1). The flow is assumed to be incompressible and non-time- 
dependent, in the mean. 

If the normal-stress terms are neglected, the two momentum equations for 
the mean motion not too close to the wall are 

DU lap a 
-+--+-(iz) = 0, 
Dt pax i3y 
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FIGURE 1. Schematic diagram showing the mean velocity arid shear 

and the continuity equation is 

au av aw 
ax ay ax 
-+-+-- = 0. 

627 

(2) 
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X 

stress profiles. 

(4) 

U ,  8, W are the mean velocity components, and u, v, w the fluctuating velo- 
city components, in the x, y, z directions respectively; p is the static pressure 
and p the density. 

The kinetic-energy equation for the fluctuating velocity components (the 
turbulent energy equation) can be written 

( 5 )  
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40-2 



628 J .  F. Nash 

where p f  is the fluctuating component of the static pressure; a bar denotes 
the time average. The resultant fluctuating velocity is 

- 

q 2  = ;Ll?+G+G. (6) 
As before, the viscous and normal-stress terms have been neglected. 

In the above system of equations there are more unknowns than relations, 
and empirical information must be introduced to make the system determinate. 
Here, the empiricism is introduced by modelling the advection, diffusion and 
dissipation terms in the turbulent energy equation. 

3. Assumptions 

(1968) in two dimensions, three assumptions can be written down at  once. 
Following the work of Townsend (1955), Bradshaw et al. (1967) and McDonald 

- 
{ (UV)2+ (VW)”* = a,q2, (7)  

where a, is the ratio of the magnitude of the shear stress to the turbulent in- 
tensity, a2 is a turbulent diffusion parameter, Q is the resultant mean velocity 
(Q2 = U 2 +  W 2  to the boundary-layer approximation), and L is the dissipation 
length ; subscript e denotes conditions at the edge of the boundary layer, and the 
boundary-layer thickness is defined as S = (y)* for Q = 0-995&,. The first states 
that the magnitudeof the shear stress is proportional to the turbulent intensity via 
a constant a,, which is taken equal to 0.15. The second expresses the diffusion 
term (to the boundary-layer approximation only the diffusion normal to the 
wall is significant) as a function of the local intensity and the maximum intensity 
at the particular x, x station. The form of this expression emphasizes the aspect 
of bulk diffusion, and the value of the ‘diffusion coefficient ’, a2, at the edge of the 
boundary layer is chosen to impose the correct two-dimensional entrainment 
rate (see Bradshaw et aZ. 1967). The use of the same expression in three dimensions 
is felt to be justified because diffusion is only important near the outer edge of 
the boundary layer, where the velocity and shear-stress profiles are approximately 
collateral. The third assumption, (9), implies that the dissipating eddies are 
approximately isotropic, but is otherwise uncontentious until L is specified. 

The diffusion coefficient and the dissipation length are assumed to be universal 
functions of y/6 (figure 2 ) ,  and the form of the functions is taken to be the same 
as proved successful in two dimensions (Nash 1968). The use of 6 as the scaling 
length for quantities related to the turbulence (especially for L)  is again analogous 
to the work in two dimensions. However, the justification of its use becomes more 
questionable in a three-dimensional boundary layer because of the larger range 
of values of aS/ax (and as/&) made possible by lateral flow divergence or conver- 
gence. An experimental study is required to investigate the rate of increase of 
eddy size in a boundary layer whose thickness is rapidly increasing or decreasing. 
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The suspicion that this effect may be significant is strengthened by the difficulties 
that have been encountered (elsewhere) in predicting the wall shear stress in the 
boundary layer on a waisted body of revolution, measured by Winter, Smith & 
Rotta (1965). 

Dissipation 
length (L/6) 

0.5 

0 

Y P  
FIGURE 2. Empirical functions. 

The assumption that the magnitude of the shear stress is proportional to the 
turbulent intensity is a consequence of Townsend’s structural-equilibrium 
hypothesis, and it can be expected to be valid away from the edges of the turbu- 
lent region and (at least in two dimensions) away from regions where the mean- 
velocity gradient changes sign. For practical purposes it appears to be an 
adequate approximation to assume that it holds more generally (Bradshaw et al. 
1967). Objections which can be made about the validity of this assumption near 
mean-velocity maxima are of little practical significance, since the shear stress 
is usually small in those cases anyway. 

The structural-equilibrium hypothesis asserts that if a mean-velocity gradient 
is suddenly imposed on a field of turbulence, the turbulence becomes fully 
strained, i.e. reaches an asymptotic degree of anisotropy, in a time which is short 
compared to the time taken to reach energy (and, by implication, shear-stress) 
equilibrium. Very recently, the validity of Townsend’s hypothesis has been 
questioned on the basis of experimental results (Tucker & Reynolds 1968). How- 
ever, the observed discrepancies do not appear to be so serious as to place the 
corresponding assumptions, involved here, on a lower order of credibility than 
the remaining assumptions in this work. Another assertion consistent with the 
hypothesis is that, in three dimensions, the direction of the shear stress responds 
to a change of the mean velocity gradient more quickly than does its magnitude. 
The precise relationship between the various time scales is likely to remain a 
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subject of controversy for some time, but here the provisional assumption is 
made that the directional response-time is short, and therefore that the shear 
stress acts approximately in the direction of the maximum rate of strain of the 
mean flow 

where both of these ratios are negative. Equation lOis consistent with the concept 
of a scalar eddy viscosity, although the present method does not, of course, imply 
that the value of this scalar can be prescribed in advance. 

The above system of equations approximate to the physical situation only in 
the fully turbulent part of the boundary layer. The exclusion of the viscous 
terms precludes their application to the sublayer and blending region; indeed 
the author is unaware of any method for solving the flow in the blending region, 
unless empirical modifications to mixing-length or eddy-viscosity profiles are 
regarded as ‘ solutions ’. 

To overcome this difficulty the numerical solution is matched to the universal 
inner law at  some convenient, small distance from the wall: in practice the f i s t  
mesh point away from the surface. The inner law is assumed to be applicable 
to three-dimensional flows when used to relate the magnitude of the wall shear 
stress and the absolute mean velocity. The first mesh point is usually taken at 
about y/6 = 0-03, and probably this is sufficiently close to the wall for it to be 
unnecessary to incorporate the modifications to the inner law suggested by Perry 
& Joubert (1  965). The matching point is assumed to lie in the logarithmic region 
regardless of the value of y(~,/p)*/v, where 7, denotes the resultant wall shear 
stress and v the kinematic viscosity; this is consistent with the nature of the 
equations which have a logarithmic solution for small y. 

uv/(aulay) = vw/(aw/ay), (10) 

4. Method of solution 
The integration domain 

The problem consists of integrating (l), (2), (4) and (5) simultaneously, incor- 
porating the various empirical assumptions and giving the appropriate boundary 
conditions. 

In the present work, the equations are integrated in a three-dimensional 
domain bounded in the y-direction by the wall and a surface a short distance 
beyond the ‘edge ’ of the boundary-layer (figure 3), and in the x-direction in some 
convenient manner for the particular geometry (figure 4). The domain can, in 
principle, be semi-infinite in the x-direction, in which the calculation proceeds. 
The co-ordinate system is not forced to coincide with the external streamline 
pattern, nor it is necessary to know where the streamlines are at  the outset. It is 
required to specify only the pressure distribution, and the only restriction is that 
the U-component of velocity be positive everywhere in the domain. There is 
no restriction to small ‘crossflows ’. 

A rectangular mesh is used, but the collocation points in the y-direction are 
redistributed after each x-step; this is done, partly to allow for an increase (or 
decrease) in the maximum boundary-layer thickness at that x-station, and 
partly as an aid to stability. The mesh is staggered as shown in figure 3. Typically, 
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between 12 and 15 points are taken in the y-direction. The z-step can be chosen 
to suit the magnitude of the gradients in the z-direction; the maximum number 
of z-stations used so far in this work has been 21. The z-step is typically 0.2 to 

@ 

+AX- X 

( = ; a )  
FIGURE 3. Mesh pattern (2, y plane) : cross-section of integration domain. 

External ~ a l c u ~ a t i o n  1 
proceeds in streamlines 
this direction 

FIauRE 4. Mesh pattern (2, z plane): ‘plan view’ of integration domain. 
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0.5 times the minimum boundary-layer thickness a t  that x-station, subject to 
stability restrictions on the maximum value of Ax/Azt (for mesh size Ax, Ay, Az). 

Calculation procedure 

The calculation proceeds in the x-direction, values of all the dependent variables 
being determined over successive planes: x = constant. Thus at  each x-station, 
a row of mean velocity and shear stress profiles is calculated. 

The two momentum equations, (1) and (2), and the modified turbulent energy 
equation, ( 5 ) ,  (6) and (lo), are used to determine the values of aU/ax, aW/& 
and @)/ax, respectively, at  a given z-plane, in terms of the various flow para- 
meters, a t  that plane, and their y- and z-derivatives. Values of U ,  W and? are 
then found at  the end of the x-interval by a straightforward explicit, forward- 
difference scheme. 

After the collocation points are redistributed, as shown in figure 3, new values 
of U ,  W and are found from the previously calculated ones by interpolation. 
The interpolation process has a stabilizing influence on the computation at the 
expense of little loss of precision. The stability and accuracy of a two-dimensional 
version of this numerical scheme are discussed by Nash (1968). It must be empha- 
sized that the stability criteria for parabolic equations, for instance, those 
describing the laminar boundary layer, are irrelevant to the present problem 
since the equations form a hyperbolic system; this is true even in two dimensions 
as a result of the particular form of the diffusion term in the present model 
(Bradshaw et al. 1967; Nash 1968). 

The integration is carried out for all the mesh points over the y-z plane, 
down to the first row away from the surface. 

The values of V over the forward plane are found from the following expression, 
which can be derived by eliminating aU/ax between the x-momentum equation 
and the continuity equation 

The magnitudes of the wall shear stress vectors at the forward station are found 
from the mean velocities a t  the first row of mesh points, using the simple inner- 
law relation 

where Q is the resultant mean velocity; the following values have been assigned 
to  the constants: K = 0-4, 

c = 2.0. 

The direction of the wall shear stress vectors is found by extrapolating the 
direction of the mean velocity vectors from the first few mesh points away from 
the surface. It does not appear to be sufficiently accurate to assume that the 
mean velocity profiles are collateral between the wall and the first mesh point, 
although to assume that they are not strictly undermines the validity of (12). 

t The appropriate Couran~Friedrichs-Levy condition is that Ax/Az must be less than 
1 UlWl.  
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Boundary conditions 

Values of U ,  W and a" are required to be known over the initial plane; these 
data correspond to a row of velocity and shear-stress profiles in place of the single 
pair of profiles required in a two-dimensional calculation. The initial shear-stress 
profiles are rarely known, and usually they must be estimated from the velocity 
profiles using, say, mixing-length theory. This was necessary in the present work, 
but in the comparisons with experiment shown below ( $ 5 ) )  the possible errors 
thus introduced have been minimized by allowing the boundary layer some initial 
length to settle down before reaching the matching station. Fortunately, unless 
the early part of the run is a region of large adverse pressure gradient, the 
solution is fairly insensitive to the initial shear stresses. 

A t  the upper surface of the domain the appropriate boundary conditions are 

The condition of irrotationality in the external flow, (15), places a restriction on 
the generality of the pressure field which can be imposed. It will be noted that 
if the pressure distribution is specified over the domain, and also the values of 
V,  and W ,  on the boundary, then in general it is possible to construct flows which 
do not satisfy this condition.? Care must be taken to ensure that the flows, for 
which calculations are being performed, are physically relevant. 

The boundary conditions at the wall are taken care of by matching the 
numerical solution to the universal inner law. 

In  general, boundary conditions are also required along the sides of the 
integration domain, although in most cases it is practically impossible to specify 
them. In the present calculations, the side boundary conditions have been in- 
vented by extrapolating outwards from within the domain. Values of U ,  W and 

were found by linear extrapolation from the first two mesh points from the 
edge of the domain. In  cases where fluid is flowing into the domain through a 
particular side, this procedure creates a potentially unstable region, which 
spreads inwards from that side as the calculation proceeds downstream, bounded 
(in principle) by the stream surface originating from the upstream ' corner ' of 
the domain. If fluid is leaving the domain through a particular side, conditions 
on that boundary are, in principle, determined by conditions inside the domain, 
and the extrapolation process has rather more justification. 

j Some of the three-dimensional laminar boundary layers referred to in chapter 8 of 
Rosenhead (1963) have this property. 
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Machine time 

The method was programmed in FORTRAN 4, and the computations were 
performed on an IBM 360-50 machine. The running time for the calculation of 
Hornung & Joubert's (1963) boundary layer ( Q  5) was of order 5 min. 

5. Comparison with experiment 
Making comparisons between theory and experiment for three-dimensional 

turbulent boundary layers, and interpreting the degree of correlation achieved, 
is substantially more difficult than in two dimensions. In  most cases a computer 
program has to be set up for each flow situation, incorporating as close an approxi- 
mation to the boundary conditions as can reasonably be made from the recorded 
experimental conditions. The task of interpreting the experimental conditions 
is complicated by the unknown sensitivity of both the real flow and the calculation 
method to small departures from the true boundary conditions. 

Initially it was hoped to include comparisons with four sets of experimental 
data, but two of these were discarded at a late stage in the work. Comparisons 
with Francis & Pierce's (1967) data were discarded, because it was found that 
the boundary layer in their curved channel was dominated by the effects of the 
corner flow at the junction of the side walls and the floor of the channel, and these 
effects could not be taken into account properly in the calculations. Comparisons 
with Cumpsty's (1967) data on the attachment-line boundary layers were not 
used, because certain discrepancies between theory and experiment appeared to 
arise directly from the low Reynolds numbers of the tests; the value of R, the 
Reynolds number based on momentum thickness all lie below 800. It was felt that 
comparisons with data at low Reynolds numbers could better form the subject of a 
separate study. The two remaining sets of comparisons will be presented in detail. 

Cumpsty (unpublished) 

These data relate to the boundary layer on the rear of a 61" swept wing 
(figure 5 ) ;  the wing was of 18in. chord (measured normal to the leading edge) 
and completely spanned a 48 in. wind-tunnel test section. Measurements of the 
mean velocity profiles were made between the line of minimum pressure and the 
separation line. Two chordwise pressure distributions, measured at spanwise 
stations about two chord-lengths apart, differed by an amount which varied, with 
chordwise position, between extremes of zero and 0.08 times the free-stream 
dynamic pressure ( ipQ:) ,  where Q, denotes the value of Q in the free stream 
at infinity. 

The calculations were started 3.5 in. upstream of the minimum-pressure line 
(designated x = 0), and the predicted and measured values of 6 were matched 
a t  x = 0. It was found that, owing to the strong negative pressure gradient up- 
stream of the matching station, the solution was insensitive to the precise form 
of the velocity profiles at the initial station. Comparisons with the measured 
mean velocity profiles are presented in figures 6-8 for the stations A-C, shown 
in figure 6, which correspond to x = 5.6, 7.7 and 9-Sin. respectively. The profiles 
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are plotted (although they were not calculated in this way) in terms of ‘stream- 
wise ’ and ‘ crossflow ’ components, using the commonly accepted definitions. 
All velocities are made dimensionless by dividing by the magnitude of the velocity 
vector at  the edge of the boundary layer. Two sets of calculations are submitted. 

Trailing >/ LApprox. observed 
edge separation line 

FIGURE 5. Cuinpsty’s flow over the rear of a swept wing. 
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(Curves a, b 
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‘b Crossflow 
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0.2 0.4 0.6 0.8 1 .o 
Mean velocity 

FIGURE 6. Cumpsty: mean velocity profile, station A (z = 5.6 in.). 
Theory : - - -, a ; --, b ; Experiment : 0, 0. 

In  calculation ‘a’ it  was assumed that the flow corresponded to that over an 
infinite yawed wing, i.e. with all derivatives in the z-direction equal to zero. 
Calculations for infinite swept wings are quasi-two-dimensional, and need be 
done for one z-station only (i.e. only a two-dimensional mesh is required). This 
calculation failed to predict either the correct rate of increase of boundary-layer 
thickness with 5 or the correct development of the crossflow profile; at the last 
station (figure 8) 6 is underestimated by 25 %, and the maximum crossflow 
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velocity by 60 yo. Also, the flow was predicted to remain attached over the whole 
chord, whereas separation was observed experimentally. 

These discrepancies are larger than can reasonably be attributed to inade- 
quacies of the flow model. Some calculations were done in which large, arbitrary 
changes were made to the empirical functions, but even halving the dissipation 

0.6 ̂.I 
0.4 

d .- v 

0.3 
a 

0.2 

0.1 

0 0.2 0.4 0.6 0.8 I .o 
Mean velocity 

FIQURE 7. Cumpsty: mean velocity profile, station B (z = 7.7 in.). 
Theory: - - -, a; - , b.  Experiment: 0, D. 

length in the outer part of the boundary layer failed to bring theory and experi- 
ment much closer together. Nor can the discrepancies be attributed to additional 
flow convergence, i.e. additional to that normally associated with the curvature 
of the external streamlines on an infinite swept wing. By postulating a sufficiently 
large additional convergence, it was possible to match the variation of 6 with 2, 
but the shape of the velocity profiles remained essentially unaltered. 

Some subsequent calculations were done to examine the effect of including 
a spanwise pressure gradient. These calculations required a three-dimensional 
mesh. The curves designated ' b ' in figures 6-8 show the effect produced by a 
uniform gradient equal to twice that formed by dividing the maximum difference 
in pressure between the two spanwise measuring stations by the distance between 
them. This calculation is in considerably better agreement with experiment 
than ' a 7 .  The streamwise and crossflow profiles are now predicted tolerably well 
and separation is predicted to occur a short distance downstream of station C' 
(separation being defined here as the condition where the chordwise component 
of the wall shear stress falls to zero). It is difficult to claim more than that the 
postulation of such a spanwise pressure gradient offers a means of reconciling 
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theory and experiment, and that there is evidence of some spanwise pressure 
variations from the recorded measurements. But in any event the calculation 
draws attention to the sensitivity of this type of flow to small spanwise gradients, 
and to the difficulty of setting up an experiment to represent infinite-swept-wing 
conditions. 

0.8 e 
0.6 

h 

d 
.C Y 
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0 0.2 0.4 0.6 0.8 1 .o 
Mean velocity 

FIGURE 8. Cumpsty: mean velocity profile, station C (z = 9.8 in.). 

Hornung & Joubert (1963) 

These data relate to the flow over a flat plate approaching a circular cylinder, 
of 22in. diameter, standing with its axis normal to the plate (figure 9). The 
cylinder had a fairing on its leeward side, but the pressure distribution ahead of 
it corresponded closely to  that given by two-dimensional potential flow past an 
isolated cylinder (the plate forms a stream surface of the potential flow), and this 
potential-flow pressure distribution was used in the calculations. In  the calcula- 
tions the plate was regarded as being semi-infinite, and the integration domain 
extended from 18in. on one side of the axis of symmetry to 36in. on the other 
side. 

The calculations were started 60in. upstream of the crylinder, and at  the initial 
station the mean velocity profiles were assumed to be of uniform thickness, 
collateral, and of ‘flat-plate’ form, but with the appropriate velocity vector 
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(according to the potential flow) a t  their outer edges. The thickness of the initial 
boundary layers was adjusted so as to match the measured value of 6 at a point 
on the axis 14.5 in. upstream of the cylinder. 

Comparisons with the measured mean velocity profiles are shown in figures 
10-12 for stations A-C (see figure 9), which correspond to runs 14, 8 and 23, 
respectively, in the original paper, As before, the profiles are plotted in terms of 
their streamwise and crossflow components. Two sets of calculations are shown. 

Cylinder 
(with fairing) 

Approx. observed. ’ 
separation line 

Calculation 
matched here 

I 

Profile 
comparisons 
shown for 
these points 

Calculation 
started here 

___ 

FIGURE 9. Hornung & Joubert’s flow approaching a circular cylinder. 

In calculation ‘ a ’ the unmodified potential-flow pressure distribution was used. 
The results are in fair agreement with experiment except that there is a tendency 
to underestimate the crossflow velocities near the wall at  stations A and C 
(figures 10 and 12), particularly the latter. 

Part of the discrepancy can be traced to a slight asymmetry in the original 
experiment; the mean velocity profiles on the axis have a small crossflow com- 
ponent. In  order to simulate this in the theory, a second calculation. ‘b’ ,was 
performed, in which a small, uniform lateral pressure gradient was superimposed 
on the potential-flow distribution (with appropriate changes in the initial 
velocities to preserve the irrotationality of the external flow). The magnitude of 
the additional pressure gradient was chosen to reproduce the order of crossflow 
velocities at  the matching station. Calculation ‘ b ’ is in better agreement with the 
measurements at  station C but a discrepancy remains. This may be due to in- 
accuracies in representing the pressure field. 
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The general shape of the streamwise velocity profiles is predicted well, 
especially the change in 'fullness' between that at station B (figure 12) and 
the other two. There is a tendency to underestimate the boundary-layer thickness 
at stations A and C but not at B, indicating that the development of the flow in 
the z-direction has not been predicted sufficiently well. Again, this may be the 
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0.2 0.4 0.6 0.8 1 .o 
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FIGURE 10. Hornung & Joubert : mean velocity profile, station A (run 14). 
Theory: - - -, a; -__ , b. Experiment: 0 ,  0. 

0 0.2 0.4 0.6 0.8 '1 *o 
Mean velocity 

FIGURE 11. Hornung & Joubert: mean velocity profile, station B (run 
Theory: - - -, a; ___ , b. Experiment: 0 ,  0. 
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result of the assumption that the pressure field could be approximated by that 
corresponding to potential flow. 

It will be noted that the crossflow profiles in Hornung & Joubert’s boundary 
layer are characteristically different from those in Cumpsty’s. I n  the former case 
the profiles are essentially hollow, presumably a result of the strong, quasi- 
inviscid yawing of the flow, whereas in the latter case the profiles are ‘full’, 

5 

4l 3 

(Curves a, b 
indistinguishable) 

0 0.2 0.4 0.6 0.8 1 .o 
Mean velocity 

FIGURE 12. Hornung & Joubert : mean velocity profile, station C (run 23). 
Theory: - - -, a ;  -- , b. Experiment 0 , ~ .  

indicating the more significant role played by the shear stress. This difference in 
form of the profiles is predicted well by the theory. On the other hand, because 
Hornung & Joubert’s flow was dominated by the pressure gradients, the moderate 
success with which their boundary layer was calculated affords little verification 
of the assumptions regarding the shear stress. 

6. Conclusions 
This work has demonstrated the feasibility of performing calculations on 

three-dimensional turbulent boundary layers by means of the numerical integra- 
tion of the time-averaged equations of motion. The method is more general than 
previous ones: it is not restricted to boundary layers with small crossflows, to 
flows without points of inflexion in the external streamlines, or to quasi-two- 
dimensional flows, such as those past infinite swept cylinders. Moreover, it would 
appear to have considerable development potential. The machine demands of 
the method are not excessive, and useful calculations can be performed on 
computers of modest size. 

The magnitude of the shear-stress vector is determined from the integration 
of the turbulent energy equation, modified by the inclusion of empirical functions. 
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The form of these functions has been carried over from successful studies in two 
dimensions, but the assumption that their form can be retained must be regarded 
as a potential source of uncertainty no less than the additional assumption, which 
has had to be made, about the direction of the shear-stress vector. There are, 
as yet, no suitable data for checking these individual assumptions, nor has it 
been possible to make a definitive assessment of the overall performance of the 
method. 

This investigation has drawn attention to the problems involved in comparing 
even the mean flow development with experiment. One of the comparisons 
submitted here, that with Cumpsty’s data, proved inconclusive, because 
there appeared to be a substantial effect due to a spanwise pressure gradient, 
the precise nature of which could not be determined from the recorded experi- 
mental data. The other comparison, with Hornung & Joubert’s data, confirmed 
the success of the scheme for integrating the equations of motion, but shed little 
light on the validity of the shear-stress model, because their flow was dominated 
by the pressure field. 

Thus, while the comparisons with experiment are encouraging, in terms of 
the present state of the art, the major task of determining the detailed validity of 
the method must await the availability of further measurements. Therefore, in 
addition to making the customary plea for more experimental data in general, 
it might be useful to plead for an experimental program aimed specifically at 
providing data in a suitable form for checking the validity of calculation methods 
of the present type. It is hoped that the major features required of such a series 
of measurements will emerge from this paper. Further studies of profile shapes, 
particularly in narrow curved channels, will add little to the further development 
of three-dimensional calculation methods. 

The author is indebted to Dr N. A. Cumpsty, of the University of Cambridge, 
for supplying details of his experiment prior to their publication, and to Prof. 
P. N. Joubert, of the University of Melbourne, for supplying the tabulated data 
for the flow approaching the cylinder. 
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